
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Understanding Akismet using Pattern Matching
Algorithms

Jeanne D'Arc Amara Hanieka (13519082)
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13519082@std.stei.itb.ac.id

Abstract—Since its development in the 1990s, blogs are an

essential part of internet activities. It allows users from all kinds
of backgrounds and age to share their opinions online, making it
one of the most popular platform across the web. In its recent
developments, the writers and the readers are able to interact
with each other with the availability of the comment section. It is
more often rather than not to see incomprehensible comments
occupying the comment section of many blog posts.
Automattic.inc, the company behind WordPress, tried to fight
these spam comments with Akismet, a spam filtering service they
created to support WordPress. This paper will try to give an
insight on how Akismet works by modelling it using the pattern
matching algorithms.

Keywords—comments, spam, Akismet, pattern matching

I. INTRODUCTION
The history of humans trying to publish something they

worked on can be tracked as far as the prehistoric ages, where
people simply draw on walls, as a way to convey a message to
someone who will see it in the future. With the development of
writing and image processing, humans started to try to share
their ideas and opinions using numerous means like posters,
books, newspapers, and so on. The idea of knowledge-sharing
had brought countless milestones in the development of human
being, and we can say that publication had shaped the world we
are now living in.

With the emergence of the World Wide Web, people
started to make creative use out of it by making it as a big idea
board. This can be seen with the development of weblogs.
Weblogs, commonly known as blogs, are first developed as a
mere bulletin boards for companies. They are usually a part of
a main website, containing threads of writing used for
discussion and idea sharing. Since internet are getting more
commercial in the late 90s, many people started to create their
own blogs and 'write' on it. These 'writings' are not limited to
texts only, but also pictures, videos, links, and so on.

The one feature that almost every blog-publishing owns is a
comment section. The blog writer and the reader can freely
interact on the comment section of a certain post or web by
simply writing on the text box available on the web. It is an
easy way for the writers to get suggestions and critics, as well
as praises from their readers. However, with how easy people
can comment on the comment section on blogs, it's also easy
for irresponsible parties to fill those comment section with

unwanted repeating messages or malicious links, called spam
comments.

Image 1.1 Platforms that provides blog-publishing systems

(source: https://www.raghwendra.com/blog/the-top-15-best-
blogging-platforms-a-detailed-synopsis/)

One of the most commonly known content management
system (CMS) is WordPress, a PHP-based blog-publishing
system released in 2003 by Matt Wullenweg. They founded
Automattic.inc two years later and went on making numerous
projects. One of the projects is called Akismet, an anti-
comment spam system that are able to work in various
blogging platforms and forums. Their purpose is to block
unwanted comments from being posted on the platform they're
working on.

While Akismet used a more complicated algorithm in order
to define whether a comment is a spam or not, it is possible to
model the way Akismet works using the pattern matching
algorithms.

II. BASIC THEORY

A. Akismet
Spam mails are first found in emails. When blogs started to

have comment sections, irresponsible people started to take
advantage of the open comment forms that allows anyone to
post comments to put spam messages inside the comment
section.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

As one of the fastest growing blog-publishing system
during that time, WordPress aimed to control the appearance of
spam mails by making a JavaScript-based plugin in 2005.
However, that did not went well, as the spammers succeeded in
bypassing the plugin a few hours after its launch[1]. They
decided to do a different approach, which is to make a plugin
that receives crowd-sourced spam reports, called 'Automattic
kismet', or Akismet in short. It could identify whether a
comment is a spam or not by comparing it to the reports made
beforehand on its database. The more reports that came in, the
more effective Akismet gets.

When a blog or a platform runs Akismet, it tries to match
the comment they received with the messages available on
their spam database. If it is identified as a spam, it would not be
posted on the comment section or the forum. A user on that
platform could report a comment as a spam, adding it to the
spam database. In its development, Akismet can run not only
on WordPress, but also in numerous other blog platforms and
even forums using a public Akismet API.

B. Pattern Matching
Pattern matching is an algorithm to search for the

appearance of a certain string (called 'pattern') in a certain
sentence we call 'text'. Pattern matching usually showed the
first occurence of the text in a pattern, but there are any
implementations that utilize the way pattern matching
algorithm works [4]. Pattern matching is used in many aspects
of modern programming, such as for searching texts in a text
editor, as a tool to implemet web search engine, analyzing
image, analyzing the informations on bionformatics, and many
more. Here's an example of text and pattern.

Text: change the words in such a way that a human
Pattern: such

Example 2.B.1 Brute Force Algorithm
There are several algorithms that can be used to find where

does the text appear on the pattern. The algorithms that will be
discussed in this paper are:

1. Brute Force Algorithm
2. Knuth-Morris-Pratt Algorithm (will be referred as

the KMP Algorithm from this point onwards)
3. Boyer-Moore Algorithm (will be referred as the

BM Algorithm from this point onwards)
Each of the algorithms have their own advantages and

disadvantages, ranging from complexity to the size of the
pattern or text being tested.

C. Brute Force Algorithm
This algorithm is perhaps the first one to come in mind,

since it manually checks each position in the Text to see if the
Pattern starts in that certain position. The Pattern moves one
character at a time, from the first letter into the last letter of
Text. Here's an example of Brute Force Algorithm using the
Pattern 'NOT' and the Text 'NOBODY NOTICED HIM'.

Image 2.C.1 Brute Force Algorithm (source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf)

Notice that even if 2nd or the 3rd word matched the text,
the search keep on moving by 1 character. It simply matched
the first letter of the Pattern to the current position in the Text,
and when they matched, they will try to match the second letter
in the Text into the next position in the Pattern.

The running time of the worst case is O(mn), when several
suffix matched the Text but didn't match when they arrived at
the last. The m represents the the length of the Pattern, while
the n represents the length Text. The best case would be when
no characters in Pattern matches the character in Text. The
running time for this case is O(n). Example 2.A.1 represents
the average case with a running time of O(m+n). Many
classifies Brute Force Algorithm as one of the simplest pattern
matching algorithm.

The algorithmic notation for the Brute Force Algorithm are
as follows (with t as the array of string containing Text and p as
the array of string containing Pattern):
function BruteForce
 posisi <- 0
 repeat while posisi < n-m
 j <- 0
 repeat while j < m and t[posisi+j] == p[j]
 j <- j + 1
 posisi <- posisi + 1
 if (j == m)
 return posisi
 return "Tidak ada pada Pattern"

D. Knuth-Morris-Pratt Algorithm (KMP Algorithm)
The Knuth-Morris-Pratt (KMP) algorithm looks for the

Pattern like Brute Force, which is from left-to-right[3]. It is
considerably more effective rather than the Brute Force
algorithm, since it utilize the information they get from the
previous matching process in order to save iterations rather
than moving to the right one character at a time. One of the
ways to utilize the KMP Algorithm is to use LPS array
(Longest proper Prefix which is also Suffix).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

The steps to make the LPS Table are [5]:
1. Make a one dimensional array (LPS) with the

length equal to the length of the Pattern.
2. Set variables i = 0 and j = 0.
3. First of all, compare the character on Pattern[i]

and Pattern[j]. (We treat the pattern as an array of
string).

4. If the characters are identical, set LPS[j] as i+1.
Add 1 to the variables i and j. Go back to step 3.

5. If the characters are not identical, check the value
of i. If i = 0, set LPS[j] = 0 and add 1 to the
variable. If i != 0, set i = LPS[i-1]. Go back to step
3.

6. Repeat above steps until all the values of LPS[]
are filled.

For example, a pattern ABCDABD would make an LPS
array of [0, 0, 0, 0, 1, 2, 0]. Here is an illustration on how to use
LPS array on the test ABC ABCDAB ABCDABCDABDE.

Image 2.D.1 The steps of KMP Algorithm using LPS array

(source:
http://www.btechsmartclass.com/data_structures/knuth-morris-

pratt-algorithm.html)

The movement of the pattern is based on the number on the

LPS array. For example, the first matching attempt ends on the
3rd character. We check the value of LPS[3-1] (which is
LPS[2]), which is 0. Since the value is 0, the next matching
process starts right after the 3rd character when we find the
mismatch. The 4th matching process showed that the mismatch
is on the 6th character. The value of LPS[5] is 2. Because of
that, we checked from the 2nd character on the Pattern while
putting the 2nd character on the place where we found the
mismatch.

The complexity of KMP algorithm is O(m+n), and is much
faster than the Brute Force algorithm. The implementation of
KMP algorithm in Java is written below. The function
computeFail is to return an array of LPS.

public static int kmpMatch(String text, String pattern)
{
 int n = text.length();
 int m = pattern.length();

 int fail[] = computeFail(pattern);
 int i=0;
 int j=0;
 while (i < n) {
 if (pattern.charAt(j) ==
text.charAt(i)) {
 if (j == m - 1)
 return i - m +
1; // match
 i++;
 j++;
 }
 else if (j > 0)
 j = fail[j-1];
 else
 i++;
 }
 return -1;
}

E. Boyer-Moore Algorithm (BM Algorithm)
Unlike Brute Force and KMP Algorithms, BM Algorithm is

an algorithm that approaches the words backwards. It compares
the string from the rightmost character, from right to left. It is
also considered the most efficient string searching algorithm
comparing to the 2 previous algorithms. The characters moved
according to the status of the string, whether they're a full
match or only a partial match. They used two functions to do
the shift, which is good-suffix heuristic and bad-character
heuristic.

Bad-character heuristic shifts the pattern when the character
of the text doesnt match the current character on the pattern. It
has two cases: it moves the pattern until the mismatch becomes
a match, or it moves the pattern until it moves past the
mismatched characters. The worst case took the running time
of O(mn), and the best case is O(m/n).

Image 2.E.1 The steps of Bad-character heuristic (source:

https://www.geeksforgeeks.org/boyer-moore-algorithm-for-
pattern-searching/)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

The Good-suffix heuristic shifts the pattern when the
substring of Text matched with a certain substring of P. It shifts
the pattern until there is another occurrence of the substring of
Text in Pattern matched with substring of Text in Text, Pattern
moves past the substring of Text, and there are a prefix of
Pattern that matches the suffix of the substring of Text. It needs
some preprocessing beforehand, differ for each cases.

III. IMPLEMENTATION AND SOLUTION
The implementation of how Akismet works using the

Pattern Matching algorithm will be made using Python. It will
mirror the process of getting the comments, checking it with
the available database, delete the comment if the program
recognizes it as a spam, and posting the comment if it does not
recognize it as a spam.

It will be implemented using 2 algorithms, which are:
1. Knuth-Morris-Pratt Algorithm
2. Boyer-Moore Algorithm

These algorithms will be used to search for identifying
whether the comment written resembles the spam comments
available on the database. The algorithms are adapted from the
author's Tugas Besar 3 and from the KMP Algorithm written
by Bhavya Jain [2] with some modifications to accomodate the
things the author want to show.

A. Knuth-Morris-Pratt Algorithm
The steps taken to implement the algorithm is to make the

function to make the LPS array and the function to run the
algorithm itself. The function is as follows:
def makeLPS(pattern, M, lps):
 panjang = 0

 lps[0]
 i = 1

 while i < M:
 if pattern[i]== pattern[panjang]:
 panjang += 1
 lps[i] = panjang
 i += 1
 else:
 if panjang != 0:
 panjang = lps[panjang-1]
 else:
 lps[i] = 0
 i += 1

It implements the steps taken to make an LPS array as

mentioned on section II.D. It fills up the LPS array that is
present on the KMP function. The KMP function is as follows:
def KMP(pattern, text):
 ada = 0
 M = len(pattern)
 N = len(text)

 lps = [0]*M
 makeLPS(pattern, M, lps)

 i = 0
 j = 0

 while i < N:

 if pattern[j] == text[i]:
 i += 1
 j += 1

 if j == M:
 ada = 1
 j = lps[j-1]

 elif i < N and pattern[j] != text[i]:
 if j != 0:
 j = lps[j-1]
 else:
 i += 1
 return ada

It implements the steps taken to run the KMP array as

mentioned on section II.D. It returns whether there's a string
that matches the pattern we input or not. The usage will be
shown on the main program.

B. Boyer-Moore Algorithm
The function made to implement the algorithm is as

follows:
def BM(pattern,text):#Boyer-Moore
 m=len(pattern)
 n=len(text)
 i=m-1
 dict={}
 for a in range(m):
 dict[pattern[a]]=a
 if(i>n-1):
 return False
 j=m-1
 while (i<n):
 if(pattern[j]==text[i]):
 if(j==0):
 return True
 else:
 i=i-1
 j=j-1
 else:
 if (text[i] in dict):
 lo = dict[text[i]]
 else:
 lo = -1
 i = i + m - min(j, 1+lo)
 j = m-1
 return False

It returns a true or false statement that shows whether the
pattern shows up on the text or not. The implementation
follows the theory mentioned on section II.E.

C. Main Program
import csv

def addComment(spamlistarr, comlistarr):
 exist = 0
 comment = input("Add comment to this post: ")
 algo = input("Choose check algorithm (bm/kmp): ").lower()
 while (comment != "stop"):
 if (algo == 'kmp'):
 pos = 0
 while (pos < len(spamlistarr)):
 exist = KMP(comment,
''.join(spamlistarr[pos]))
 if exist:
 print("Comment is a spam!")
 break
 else:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

 pos += 1
 if exist == 0:
 addComDB(comment, comlistarr)
 print("Your comment is added to the comment
section.")
 elif (algo == 'bm'):
 pos = 0
 while (pos < len(spamlistarr)):
 exist = BM(comment,
''.join(spamlistarr[pos]))
 if exist:
 print("Comment is a spam!")
 break
 else:
 pos += 1
 if exist == 0:
 addComDB(comment, comlistarr)
 print("Your comment is added to the comment
section.")
 else:
 print("Input is wrong.")
 exist = 0
 comment = input("\nAdd comment to this post:
").lower()
 if comment == 'stop':
 break
 algo = input("Choose algorithm (bm/kmp): ").lower()

def chat(spamlistarr, comlistarr):
 print('''1. Check comments
2. Add comments
3. Exit''')
 chatnya = input("What do you want to do: ")
 if chatnya == '1':
 no = 1
 for item in comlistarr:
 print(no,'.',''.join(item))
 no += 1
 report = input("Do you want to report? (Y/N): ")
 if report == "Y":
 commentreport = int(input("Which comment?
(number): "))
 print(comlistarr[commentreport-1])
 addSpamDB(comlistarr[commentreport-1],
spamlistarr)
 else:
 chat(spamlistarr, comlistarr)
 elif chatnya == '2':
 addComment(spamlistarr,comlistarr)
 chat(spamlistarr, comlistarr)
 elif chatnya == '3':
 quit()
 else:
 print("Your input is wrong.")
 chat(spamlistarr, comlistarr)

spamlistarr = readDBspam()
comlistarr = readDBcomment()
chat(spamlistarr, comlistarr)

The function 'chat' is the main function that combines all

the previous declared functions. It basically asked whether the
user wants to see available comments on a certain post, or to
write a new comment on that certain post. It asked the user for
the comment. For testing sake, this implementation also asks
which algorithm they want to use whether the comment is a
spam or not. If a comment is considered a spam, it won't get
merged into the comment section, showing 'Comment is a
spam!'. However, if the comment is not a spam, they will be
added to the comment section.

It also allows the user to see and report a comment if they
considered it a spam. That comment will be added to the spam
database and the next time similar post showed up, it will be
considered as a spam. There are also some read and write
function for accessing the database which are not included in
the code snippet above.

IV. TEST
The program will first ask what action the user want to do

on that certain post. They could check the comments, or add a
new comment.

Image 4.1 Choosing the action

If the user chose to check the comments, all the comments
on that post will be shown.

Image 4.2 Showing comments

While looking at the comments, the user could report a
comment they think not appropriate. For example, let's say the
third comment is a spam.

Image 4.3 Reporting a comment

When someone writes that similar comment that we
reported, they will be deemed as a spam, thus not being added
to the comment section.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Image 4.4 Blocking a spam

When it recognizes a spam, it shows that the comment is a
spam, thus not being added to the comment section. However,
when the comment is not considered a spam, the comment is
added to the comment section.

Of course, Akismet did not inform the spammers that their
comment is a spam. Usually, it shows up on the blogger's
dashboard, asking them whether they want to report it or not. It
checks all the available spam comments on the database, and
stopped when they see a similar one.

V. CONCLUSION
Spam mails has been around the internet since the start of

its existence, and it will not stop anytime soon. With systems
such as Akismet, we could fight the spammers altogether by
crowd-reporting suspicious comments so that the system could
learn all kinds of spam mails. We may not be able to outwit the
spam messages when it first appeard, but we could fight it if
we reported it well.

Pattern matching could be used to fight these spam
messages well. It is a bery basic theory that could help many
sustems to fight spam messages.

VIDEO LINK AT YOUTUBE
The author made a video to help readers understand this

paper better. The video can be accessed on
https://youtu.be/g7K5xQwU2l8.

ACKNOWLEDGMENT
The author would like to say thank you to everyone who

had supported the author in the process of writing this paper.
To God, who had provided the author with life and mind so
that this paper could be finished in time. To Dr. Nur Ulfa
Maulidevi, S.T., M.Sc as the lecturer of the Algorithm
Strategies course in which the author took and got inspirations
from. To friends, who gave encouragements and keeping the
author's spirits up. To my parents, whom I missed so much and
supported me from far away, even between the hardships they
are facing.

REFERENCES
[1] "Milestones: The Story of WordPress", from

https://github.com/WordPress/book/blob/trunk/Content/Part%203/17-
akismet.md accessed on 10th of May 2021

[2] "Python Program for KMP Algorithm for Pattern Searching", from
https://www.geeksforgeeks.org/python-program-for-kmp-algorithm-for-
pattern-searching-2/ accessed on 8th of May 2021

[3] "Pencocokan String (String/Pattern Matching)", from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf accessed on 11th of May 2021

[4] Philippe Jacquet, Wojciech Szpankowski, "Analytic Pattern Matching:
From DNA to Twitter", 2015.

[5] "Knuth-Morris-Pratt Algorithm", from
http://www.btechsmartclass.com/data_structures/knuth-morris-pratt-
algorithm.html accessed on 11th of May 2021

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang
saya tulis ini adalah tulisan saya sendiri, bukan
saduran, atau terjemahan dari makalah orang lain,
dan bukan plagiasi.

Bandung, 11 Mei 2021

Jeanne D'Arc Amara Hanieka - 13519082

